MMES540 Graduate Project

Kyler Limata
May 8th, 2025

Contents

1 Design and Parameters Overview 1

2 Stress Analysis 2
2.1 Stress Equations and Assumptions 2
2.2 Numerical Simulation e 4
2.3 Fatigue Analysis and Safety Factor 4

3 FEA Validation 6

4 Materials Selection and Manufacturing Process 6

A Python Source Code 8

Introduction

This report covers the design of a piston connecting rod for an Otto cycle engine, including the stress
analysis, material selection, and finite element analysis. The piston as a whole has a bore of 80 mm,
a stroke of 96 mm a connecting rod length of 200 mm, a compression ratio of 10, a pin diameter of
45 mm, and a bearing diameter of 70 mm.

1 Design and Parameters Overview

The following design parameters are introduced for the design process:

dout: The outside diameter of the ring around the pin
Wheam: The width of the central beam section
theam: The thickness of the central beam section
Wyep: The width of the beam web
twep: The thickness of the beam web
Wpase: The width of the base
Tpasefillet: LThe radius of the fillet where the beam meets the base

Twebfillet: Lhe radius of the fillet inside the slot formed by the web

One thing to note is that the base is perfectly square, including the bottom part omitted from
the design, so the distance from the center of the bearing to the top of the base is half the width.
Additionally, the slot formed by the web spans from the edge of the base fillet to dy.: + 15mm below
the center of the pin.

2 Stress Analysis

As shown in the following figure, stress analysis will be performed at four different points; three near
the base of the piston beam section and one at the side of the rings.

Figure 1: Four stress analysis points

Only the x and y directions will be considered in this stress analysis as loading in the z direction
should be negligable.

2.1 Stress Equations and Assumptions

At point one, there is a stress concentration due to the fillet connecting the base to the ”"beam”
section of the rod. We can treat this as a bar with a shoulder fillet, giving a stress concentration
factor for the bending stress in x and normal stress in y, giving us the following equations:

Ml = Fw(rrod - 0-5wbase

6M,
Og = k/’t,bending,172
tbeamwbeam
Fy (1)
Oy = kt,aa:ial,l
beamtbeam

3 F,

Tay 2 Wheambweb

Point two is a little more complicated; it can be approximated as a bar with a shoulder fillet,
but the catch is that if the bar is the web of the "beam” section, then the small bar cross-section
does not make up the entire cross-section of the beam. After some experimentation, it was found
that multiplying the load by the percentage of the total cross-section the web cross-section takes up

in addition to the stress concentration factor produces results close to the FEA results later shown

in Section 4. However, since the end of the slot is round and not square, this approximation isn’t
entirely accurate, so it was decided to analyze at the center of the beam to avoid inaccuracies in
bending stresses. With all that, the equations for point 2 are as follows.

Awpeb = Wwebtwed

Atotal = wbeamtbeam - wweb(tbeam - tweb)

n= Aweb
Atotal
o, =0 (2)
e nkFy
Oy = t,am‘al,Qm
weobrwe

3 F,

Tay 2 Wheambweb

Originally, it was attempted to find a stress concentration factor for point three by treating it
as a combined plate with hole and solid cross-section, using a similar approximation to point 2.
However, it was found that using no stress concentration factor produced results closest to the FEA.
The equations for point 3 are shown below:

™

2
Awebfitter = (1 — Z)rbasefillet

Across,?) - wbeamtbeam - wweb(tbeam - tweb) + 4Awebfillet
M3 = F:c (rrod - 0-5wbase — Thasefillet — 0~5wweb)

Wepepts t3
I3 = U)G12web + bi%m (wbeam - wweb)

M3wbeam (3)
2[3
Fy

Across,B

3 F,

Toy = 2 Across,3

For point four, it was chosen to approximate the top of the rod as an infinite plate with a hole.
Despite it actually being a ring shape, the approximation seems to have held up during FEA. Since
we’re at the top of the rod, there is no bending stress here. The equations for point four are shown
below.

Oy =

O'y:

Across,4 = tbeam(dout - dpin)

o, =0
F
Uy - Acro:is 4 (4)
3 F,
Toy = o ————
Y 2 Across,zl

Since we’re only looking at stresses in the two-dimensional case, we can use the following equation
to find the maximum principal stresses:

_ Oz toy Iz — Ty ’ 2
01,09 = T:I: —5 + 72 (5)

Since we only need o7, we can resolve to the case where the square root is added.

2.2 Numerical Simulation

In the interest of performing a thorough fatigue analysis with a non-zero mean, a numerical simu-
lation of the stress equations for each point was developed. This simulation calculated the loading
conditions over the compression and power strokes of the ideal auto cycle - the intake and exhaust
strokes were ignored as the stresses during those strokes would be minimal but reduce the mean stress
at each point by a non-negligible amount. The full source code for the simulation and calculations
can be found in Appendix A.

For the simulation, the design parameters below were chosen - all values are in millimeters.

Table 1: Design Parameters

dout Wheam theam Wapeb tweb Whase Tbasefillet Tweb fillet
60 50 30 30 15 100 10 4.5

With these parameters and the design requirements, the stress concentration factors for points
1 and 2 could be found using the charts in chapter 4.12 of Fundamentals of Machine Component
Design (Juvinall et al.) [2].

Table 2: Stress concentration factors

Point 1 2
kt,am’al 1.8 1.65
kt,bending 1.5 None

The results of the simulation are shown below.
Python was also used to compute the maximum and average principal stress at each point; these
values are shown in the table below.

Table 3: Maximum and average stresses

Point 1 2 3 4
om (Mpa) 46.682 2.679 258.066 6.618
Omaz (Mpa) | 230.271 11.377 1277.819 28.227

2.3 Fatigue Analysis and Safety Factor

Now that the max and average principal stresses are known, a fatigue analysis can be conducted
at each point to find the safety factor. Let’s start by assuming the rod will be made from grade
80-55-06 grey nodular cast iron, which has a tensile strength of s, = 974 Mpa and a yield strength
of s, = 864 Mpa. Chapter 5-6 of Machine Elements in Mechanical Design (Mott et al.) has a chart
in Figure 5-11 for finding the endurance limit as a function of the tensile strength [1]. Assuming a
machined surface, the endurance limit for grade 80-55-06 nodular iron is s, = 350 Mpa. From there,
we can use the book’s equation for estimating the actual endurance limit:

sn = 5,(Cm)(Cst)(CR)(Cs) (6)

)

Where the C factors are the material factor, stress factor, reliability factor, and the size factor.
Per the book’s recommendation, we will choose C,,, = 0.66 for ductile (nodular) iron, Cy; = 0.8 for
axial tension, and C'g = 0.75 for 99.9% reliability. Size factor is chosen based on the diameter of the
cross-sectional area; since none of the cross sections are circular, we will instead use the equivalent
diameter, or the diameter of a circle having the same area as the cross-section. After s, is found at
each point, the safety factor can be calculated using the Soderberg Criterion:

Oz

-10° -10°
T T T T
1.5+ n O —————— 1
= 1y 1 =
& & 05 /’ .
5 0.5 1 g |
[
/
0 s 1} B
| | | \ | | \
4 6 8 10 4 6 10
ocrank acrank
108 T 10° o
T T T T
1k B
1 |
£ 5
5, 0.5 1 c 05] i
0 - ol /\ .
| | | \ | | \
4 6 8 10 4 6 10
ecrank ecrank
——Element 1 —— Element 2 —— Element 3 —— Element 4

Figure 2: Stress components vs. Crank Angle for four elements

1 (7)

ke (Uma’m _o'm,) + Om

Sn Su

The Soderberg criterion will give a more conservative estimate, which is good especially since
the loading cycle does not follow a sinusoidal pattern. With all that, the results of the calculations
can be found in the table below.

Table 4: Maximum and average stresses

Point 1 2 3 4
D, (mm) 43 239 36.6 239
C 0.81 087 0.83 0.87

s, (Mpa) | 1128 1205 115 1205
Safety Factor | 0.59 0.63 0.61 0.63

3 FEA Validation

In an attempt to verify the accuracy of the stress equations show in Section 2.1, finite element
analysis was performed using the ANSYS software. Due to difficulties with the transient structural
analysis, static structural analysis was performed at 0.rqni = 6.377907 - shortly after the start of
the power stroke. In the table below are the stress values calculated by the numerical simulation in
Pascals. This is followed by ANSYS views of each type of stress with annotations added at the four
nodes closest to the four points analyzed.

For the normal stresses in the y direction, the approximations hold up really well, especially at
point 2. Where they sort of fall apart is with the x and shear stresses, which means that the normal
stresses are off as well. This is likely due to how bulky the connecting rod is, allowing those ”force
lines” to spread apart as they move through the piston, which is not at all reflected in how the stress
analysis treats the force as a point load rather than a distributed load. In a more slender rod, those
approximations would likely be a lot more accurate.

4 Materials Selection and Manufacturing Process

As previously discussed in Section 2.3, the connecting rod will be made from grade 80-55-06 gray
nodular cast iron. Due to the concavity of the design, the casting will be done with a mold - sand
casting will be used here since the surface finish doesn’t need to be perfect. The pin hole will be
absent from the mold. After casting, the surface that touches the bearing and the pin hole will be
machined via milling, producing a high-quality surface finish.

Stress Oy oy Toy o1
Point 1 | 1.79-10% | —5.3-10~% | 9.95-10°% | 2.85- 10°
Point 2 0 —5.107% [1.99-107 | 7.9-10°
Point 3 | 5.82-10% | —4.1-107% | 4.48-10°% | 1.71- 108
Point 4 0 —9.7-1078% [442-10" | 2-10°

Table 5: Caption

(a) Normal x stress

(c) Shear stress 7oy

-7.3684e8
-1.1067e9
-1.4765e9
-1.8464e9
-2.2162e¢9 Min

(b) Normal y stress

-1.4121e8 Min

A

(d) Principal stress o1

Figure 3: Finite Element Analysis Results for Various Stress Components

A Python Source Code

Below is the source code used to perform the stress calculations at each of the four points.

import numpy as np
import matplotlib.pyplot as plt
import pandas as pd

def piston_kinematics(B, S, r, theta_crank):
W
Calculates the displacement volume and connecting
rod angle for the given piston geometry at the
passed values of theta.

Parameters

B Piston Bore

S : Piston Stroke

r Connecting Rod Length
theta_crank : The crank shaft angles

Returns

Find the displacement volume

a = S/2 # Crank Offset

s = ax*np.cos(theta_crank) + np.sqrt(r**2 - (a**2)*(np.sin(theta_crank)*%*2)) #
Displacement

Vd = (r + a - s)*(np.pi/4)*(B**2) # Displacement Volume

Find the angle of the connecting rod from the y-axis
inside = (s**2 + r**2 - ax*xx2)/(2xs*r)

inside_clipped = np.clip(inside, -1.0, 1.0)

theta_rod = np.arccos(inside_clipped)

return {’Vd’: Vd, ’theta_rod’: theta_rod }

def simulate_connecting_rod(params, funcs, npoints):
nnn
Performs a numerical simulation of the loading on a
piston connecting rod over the compression and
power strokes of the ideal otto cycle.

Uses the passed functions to find the normal and
shear stresses at any given points and computes
the maximum principle stress at each and the
average of the maximum principle stresses.

2D stress conditions are assumed.
Parameters

params: Piston Parameters

funcs : A list of functions for the normal and shear stresses at each point
npoints : Number of points to simulate at for each stroke

Returns

Dictionary : Computed principle stresses

results = {} # Outpput data

Unpack parameters

B = params[’B’] # Bore

S params [’S’] # Stroke

r params[’r’] # Connecting rod length

CR = params[’CR’] #
Tl = params[’T1’] # Temperature at 1
Pl = params[’P1’] # Pressure at 1

T3 = params[’T3’] # Temperature at 3

Ve = (1/(CR - 1))*(np.pi*S*B**2) /4 # Clearance volume

Compression Ratio

Calculate kinematics for compression and power stroke
theta_crank_compression = np.linspace(np.pi, 2*np.pi, npoints)
kinematics_data_compression = piston_kinematics(B, S, r, theta_crank_compression)

theta_crank_power = np.linspace(2*np.pi, 3*np.pi, npoints)
kinematics_data_power = piston_kinematics(B, S, r, theta_crank_power)

Compute P, V, and T at all four points
k = 1.4 # Specific heat ratio

Vi = Vc + (np.pi*S*Bx*2)/4 # Volume at 1
V2 = Vc # Volume at 2

V3 = V2 # Volume at 3

V4 = V1 # Volume at 4

T2 = T1*#CR*x(k - 1) # Temperature at 2
P2 = P1x*CRx*x*xk

P3 = P2*(T3/T2)

T4 = T3/(CR**(k - 1)) # Temperature at 4
P4 = (P1xT4)/T1 # Pressure at 4
results[’V1’] = Vi1

results[’V2’] = V2

results[’V3’] = V3

results[’V4’] = V4

results[’P1’] = P1

results[’P2’] = P2

results[’P3’] = P3

results[’P4’] = P4

results[’T2’] = T2

results[’T4’] = T4

Find pressure for the compression stroke
V_compression = kinematics_data_compression[’Vd’] + Vc
P_compression = P1*(V1*xk)/(V_compression*x*k)

Find pressure for the power stroke
V_power = kinematics_data_power[’Vd’] + Vc
P_power = (P3*V3*xxk)/(V_powerx*x*k)

theta_rod_compression = -kinematics_data_compression[’theta_rod’]
theta_rod_power = kinematics_data_power[’theta_rod’]

theta_crank = np.concat ((theta_crank_compression, theta_crank_power))
theta_rod = np.concat((theta_rod_compression, theta_rod_power))

V = np.concat((V_compression, V_power))

P = np.concat ((P_compression, P_power))

results[’theta_crank’] = theta_crank

results[’theta_rod’] = theta_rod

results[’V’] =V
results[’P’] = P

Compute load F in x and y

A = np.pi/4*B*x2 # Piston Head Area
F = PxA # Force

Fx = F*np.sin(theta_rod)

Fy = -F*np.cos(theta_rod)
results[’F’] = F

results[’Fx’] Fx

results[’Fy’] = Fy

Evaluate each stress equation and
Compute sigma 1

x_stresses = []

y_stresses = []

def

tau_stresses = []
principal_stresses = []

for func in funcs:

sigma_x, sigma_y, tau_xy = func(params, Fx, Fy)
sigma_1 = (sigma_x + sigma_y)/2 + np.sqrt(((sigma_x + sigma_y)/2)**2 + tau_xy
*%2)

x_stresses.append(sigma_x)
y_stresses.append(sigma_y)
tau_stresses.append(tau_xy)
principal_stresses.append(sigma_1)

stresses = {
’sigma_x’: x_stresses,
’sigma_y’: y_stresses,
’tau_xy’: tau_stresses,
’principal’: principal_stresses
results[’stresses’] = stresses

return results

plot_results(results):
theta_crank = results[’theta_crank’]

Plot the PV diagram

P = np.append(results[’P’], results[’P1°])
V = np.append(results[’V’], results[’V1i’])
fig, ax = plt.subplots()

ax.plot (Vx10*%x9, P*10%*-3)
ax.set_xlabel ("$Volume, (mm~3)$")
ax.set_ylabel ("Pressure(kPa)")
ax.set_title("PV_ Diagram")

Plot rod angle

theta_crank = results[’theta_crank’]
theta_rod = results[’theta_rod’]
fig, ax = plt.subplots()

ax.plot (theta_crank, theta_rod)
ax.set_xlabel(r"$\theta_{crank} (rad)$")
ax.set_ylabel(r"θ_{rod}, (rad)")
ax.set_title("RodAnglevs._ Crank Angle")

Plot Forces

F = results[’F’]*10**-3
Fx = results[’Fx’]1*10%x-3
Fy = results[’Fy’]1*10%*x-3
fig, ax = plt.subplots()

ax.plot (theta_crank, F, label = ’F’)
ax.plot(theta_crank, Fx, label = ’Fx’)
ax.plot(theta_crank, Fy, label = ’Fy’)

ax.set_xlabel (r"$\theta_{crankl} (rad)$")
ax.set_ylabel ("Forcey (kN)")
ax.legend ()

Plot x Stresses

x_stresses = results[’stresses’][’sigma_x’]
fig, ax = plt.subplots()
i=20

for sigma_x in x_stresses:
i=1i+1

10

def

ax.plot(theta_crank, sigma_x, label=r"$\sigma_{n,x}$".replace(’n’, £’{i}’))

ax.set_xlabel(r"$\theta_{crank} (rad)$")
ax.set_ylabel("Stress")
ax.set_title(r"σ_x")

ax.legend ()

Plot y Stresses

y_stresses = results[’stresses’][’sigma_y’]
fig, ax = plt.subplots()
i=20

for sigma_y in y_stresses:
i=1i+1

ax.plot(theta_crank, sigma_y, label=r"$\sigma_{n,y}$".replace(’n’, £°{i}’))
ax.set_xlabel(r"$\theta_{crank} (rad)$")
ax.set_ylabel("Stress")
ax.set_title(r"σ_y")
ax.legend ()

Plot Sheat Stresses

tau_stresses = results[’stresses’][’tau_xy’]
fig, ax = plt.subplots()
i=20

for tau_xy in tau_stresses:
i=1i+1
ax.plot(theta_crank, tau_xy, label=r"$\tau_{n,xy}$".replace(’n’, £°{i}’))
ax.set_xlabel(r"$\theta_{crankl}, (rad)$")
ax.set_ylabel("Stress")
ax.set_title(r"τ_xy")
ax.legend ()

Plot Principal Stresses

principal_stresses = results[’stresses’][’principal’]
fig, ax = plt.subplots()
i=20

for sigma_x in principal_stresses:
i=1i+1

ax.plot(theta_crank, sigma_x, label=r"$\sigma_{n,1}$".replace(’n’, £°{il}’))

ax.set_xlabel(r"$\theta_{crank} (rad)$")
ax.set_ylabel("Stress")
ax.set_title("Principal, Stresses")
ax.legend ()

plt.show ()

analyze_results(results):

x_stresses = results[’stresses’][’sigma_x’]
y_stresses = results[’stresses’][’sigma_y’]
tau_stresses = results[’stresses’][’tau_xy’]
principal_stresses = results[’stresses’][’principal’]
i=20

np.set_printoptions(precision=4)

print ("Maximum and Average, Stresses:")
for sigma_1 in principal_stresses:
i=1+1
avg_sigma_1 np.mean (sigma_1) *10%*-6
max_sigma_1 = np.max(sigma_1)*10%*-6

11

print (£"At point{i}, mean,stress = {avg_sigma_1:.3f} MPa, max_ stress,=4{
max_sigma_1:.3f} Mpa")

print ("Stressesat,the,Start of ,Combustion:")

def save_results(results, filename):
x_stresses = results[’stresses’][’sigma_x’]
y_stresses = results[’stresses’][’sigma_y’]
shear_stresses = results[’stresses’][’tau_xy’]
principle_stresses = results[’stresses’][’principal’]

data = {
’thetacrank’: results[’theta_crank’],
’Fx’: results[’Fx’],
’Fy’: results[’Fy’]

}

for i in range(len(principle_stresses)):
datal[f"sigmax{i +,1}"] = x_stresses[i]
datal[f"sigmay{i, +,1}"] = y_stresses[il]
data[f"tauxy{i +,1}"] = shear_stresses[i]
datal[f"sigmal{i,+,1}"] = principle_stresses[i]

df = pd.DataFrame(data)

df .to_csv(f"results_{filenamel}.csv", index=False)

Listing 1: Simulation Code

import simulate as sim
import numpy as np

Define piston/engine parameters
params = {
Geometry Parameters
’B’: 0.08, # m, bore
’S?’: 0.096, # m, stroke
’r’: 0.2, # m, connecting rod length
>CR’: 10, # compression ratio
’d_pin’: 0.045, # m, pin diameter
’d_out’: 0.06, # m
w_beam’: 0.05, # m, outer width of beam section
’t_beam’: 0.03, # m, outer length of the beam
w_web’: 0.03, # m, width of the web
’t_web’: 0.015, # m
’w_base’: 0.1, # m, width of piston base
’r_base_fillet’: 0.01, # m, fillet where the beam meets base
r_web_fillet’: 0.0045, # m, fillet inside the beam
Stress Concentrations
‘kt: A{
axial’: [
1.8, # Point 1
.65, # Point 2
.15, # Point 3
.0, # Point 4, not used
.0, # Point 5

R

1,
’bending’: [
1.5, # Point 1
1.0, # Point 2, not used
1.2, # Point 3

},

Otto Cycle Parameters
>T12: 21, # Celcius

’P1’: 101.325%(10%%3), # Pa

12

>T3?: 1871 # Celcius
}

Stress functions

def stress_at_1(params, Fx, Fy):
kt_axial = params[’kt’][’axial’][0]
kt_bending = params[’kt’][’bending’][0]

w_beam = params[’w_beam’]
t_beam = params[’t_beam’]
r_rod = params[’r’]
w_base = params[’w_base’]
A_cross = w_beam*t_beam

M = Fx*(r_rod - 0.5*xw_base)

sigma_x = kt_bending*((6*M)/(t_beam*w_beam#*%*2))
sigma_y = kt_axial*(Fy/A_cross)

tau_xy = 1.5x(Fx/A_cross)

return sigma_x, sigma_y, tau_xy
def stress_at_2_revised(params, Fx, Fy):

kt_axial = params[’kt’][’axial’][1]
t_web = params[’t_web’]

w_web = params[’w_web’]

t_beam = params[’w_beam’]

w_beam = params[’w_beam’]

A_cross = t_web*w_beam

A_web = w_web*t_web

A_total = w_beam*t_beam - w_web*(t_beam - t_web)
A_remaining = A_total - A_web
concentrated_percent = A_web/A_total

sigma_x = np.zeros_like (Fx)

sigma_y = (kt_axial*concentrated_percent*Fy)/A_web
tau_xy = 1.5%xFx/A_cross

return sigma_x, sigma_y, tau_xy

def stress_at_3(params, Fx, Fy):

w_beam = params[’w_beam’]

t_beam = params[’t_beam’]

w_web = params[’w_web’]

t_web = params[’t_web’]

r_rod = params[’r’]

w_base = params[’w_base’]

r_base_fillet = params[’r_base_fillet’]

r_web_fillet = params[’r_web_fillet’]
A_fillet = (1 - 0.26*np.pi)*r_web_fillet**2

A_cross = w_beam*t_beam - w_web*(t_beam - t_web) + 4*xA_fillet
M = Fx*(r_rod - 0.5*w_base - r_base_fillet - 0.5*w_web)

I = (w_web*xt_webx**3) /12 + ((t_beam**3)/12)*(w_beam - w_web)
sigma_x = (M*w_beam)/(2*I)

sigma_y = Fy/A_cross

tau_xy = 1.5%(Fx/w_beam*t_web)

return sigma_x, sigma_y, tau_xy
def stress_at_4 (params, Fx, Fy):

kt_axial = params[’kt’][’axial’][4]
d_pin = params[’d_pin’]

d_out = params[’d_out’]
t_beam = params[’t_beam’]
A_cross = ((d_out-d_pin)*t_beam)

13

sigma_x = np.zeros_like (Fx)
sigma_y = kt_axialx*Fy/A_cross
tau_xy = 2xFx/A_cross

return sigma_x, sigma_y, tau_xy

funcs = [stress_at_1, stress_at_2_revised, stress_at_3, stress_at_4]

##
npoints = 200

results = sim.simulate_connecting_rod(params, funcs, npoints)
sim.analyze_results (results)

sim.save_results(results, "final")
sim.plot_results(results)

Listing 2: Final Design Code

14

